The Age of Horror

[Image: “Clouds, Sun and Sea” (1952) by Max Ernst, courtesy Phillips.]

There’s an interesting space where early modern, mostly 19th-century earth sciences overlap with armchair conjectures about the origins of human civilization. It’s a mix of pure pseudo-science, science-adjacent speculation, and something more like theology, as writers of the time tried to adjust new geological hypotheses and emerging biological evidence—Charles Lyell, Charles Darwin, etc.—to fit with Biblical creation myths and cosmogonic legends borrowed from other cultures. Was there really a Flood? If humans are separate from the animal kingdom, how did we first arrive or appear on Earth?

It is not those particular questions that interest me—although, if I’m being honest, I will happily stay at the table for hours talking with you about the Black Sea deluge hypothesis or the history of Doggerland, two of the most interesting things I’ve ever read about, and whether or not they might have influenced early human legends of a Flood.

Instead, there are at least two things worth pointing out here. One is that these sorts of people never really went away, they just got jobs at the History Channel.

The other is that impossibly long celestial cycles, ancient astronomical records, the precession of the Earth’s poles, and weird, racist ideas about the “fall of Man” all came together into a series of speculations that seem straight out of H.P. Lovecraft.

Take, for example, Sampson Arnold Mackey and his “Age of Horror.”

[Image: Diagram from The Mythological Astronomy in Three Parts by Sampson Arnold Mackey.]

As Joscelyn Godwin writes in a book called The Theosophical Enlightenment, Mackey—a shoemaker, not an astronomer—was fascinated by “the inclination of the earth’s axis and its changes over long spans of time. Astronomers have known at least since classical times that the Earth’s axis rotates once in about 25,920 years, pointing successively at different stars, of which the current one is Polaris, the North Star. One result of this cycle is the ‘precession of the equinoxes,’ according to which the spring-point of the sun moves around the twelve signs of the zodiac, spending about 2160 years in each sign.”

Of course, the assumption that these signs and stars might somehow influence life on Earth is the point at which astronomy morphs into astrology.

Godwin goes on to explain that—contrary to “most astronomers” of his time—Mackey assumed the Earth’s precession was dramatic and irregular, to the extent that, as Mackey speculated, “the earth’s axis describes not a circle but an alternately expanding and contracting spiral, each turn comprising one cycle of the precession of the equinoxes, and at the same time altering the angle of inclination by four degrees.”

The upshot of this is that, at various points in the history of our planet, Mackey believed that the Earth’s “inclination was much greater, to the point at which it lay in the same plane as the earth’s orbit around the sun.”

This sounds inconsequential, but it would have had huge seasonal and climatic effects. For example, Godwin explains, “At the maximum angle, each hemisphere would be pointed directly at the sun day and night during the summer, and pointed away for weeks on end during the winter. These extremes of light and dark, of heat and cold, would be virtually insupportable for life as we know it. In Mackey’s words, it was an ‘age of horror’ for the planet.”

[Image: Diagram from The Mythological Astronomy in Three Parts by Sampson Arnold Mackey.]

The flipside of this, for Mackey, is that the Earth would have gone back and forth, over titanic gulfs of time, between two angular extremes. Specifically, his model required an opposite extreme of planetary rotation in which “there would be no seasons on earth, but a perpetual spring and a ‘golden age.’ Then the cycle would begin again.”

None of this would have been recent: “Mackey dates the Age of Horror at 425,000 years in the past, the Golden Age about a million years ago, and its recurrence 150,000 years from now.”

Nevertheless, Godwin writes, “It was essential to [Mackey’s] system of mythography that the Age of Horror should have been witnessed and survived by a few human beings, its dreadful memory passing into the mythology of every land.”

For Mackey, the implications of this wobble—this dramatic precession between a Golden Age and an Age of Horror, between the darkness of Hell and the sunlight of Paradise—would have been highly significant for the evolution of human civilization.

In other words, either we are coming out of an age of eternal winter and emerging slowly, every minute of the day, every year of the century, into a time of endless sunlight and terrestrial calm, or we are inevitably falling, tipping, losing our planetary balance as we pass into near-permanent night, a frozen Hell of ruined continents and dead seas buried beneath plates of ice.

[Image: The August 2017 total eclipse of the sun, via NASA.]

One of the weirder aspects of all this—something Godwin himself documents in another book, called Arktos—is that these sorts of ideas eventually informed, among other things, Nazi political ideology and even some of today’s reactionary alt-right.

The idea that there was once a Hyperborean super-civilization, a lost Aryan race once at home in the Arctic north, lives on. It’s what we might call the cult of the fallen Northener.

[Image: “Cairn in Snow” (1807) by Caspar David Friedrich.]

What actually interests me here, though, is the suggestion that planetary mega-cycles far too long for any individual human life to experience might be slowly influencing our myths, our cultures, our consciousness (such as it is).

My point is not to suggest that this is somehow true—to say that astrologers and precession-truthers are right—but simply to say that this is a fascinating idea and it has within it nearly limitless potential for new films, novels, and myths, stories where entirely different ways of thinking emerge on planets with extreme seasonal inclinations or unusual polar relationships to the stars.

[Image: From Pitch Black, via Supernova Condensate.]

Think of the only good scene in an otherwise bad movie, 2000’s Pitch Black, where the survivors of a crash on a remote human planetary outpost discover an orrery—a model of the planet they’re standing on—inside an abandoned 必威手机版 .

Playing with the model, the survivors realize that the world they’ve just crashed on is about to be eclipsed by a nearby super-planet, plunging them into a night that will last several months (or weeks or years—I saw the film 20 years ago and don’t remember).

Just imagine the sorts of horrors this might inspire—an entire planet going dark perhaps for centuries, doomed by its passage through space.

[Image: Adolph Gottlieb, courtesy Hollis Taggart.]

In any case, the idea that the earliest human beings lived through something like this hundreds of thousands of years ago—an imminent night, a looming darkness, an Age of Horror that imprinted itself upon the human imagination with effects lasting to this day—would mean that what we think of as human psychology is just an angular epiphenomenon of planetary tilt. Call it orbital determinism.

(Very vaguely related: a planet without a sun.)

PoMo- Mytho- Geo-

[Image: “Model of an Earth Fastener on the Delphi Fault (Temple of Apollo)” (2019) by Kylie White; photo courtesy Moskowitz Bayse.]

Artist Kylie White has two new pieces up in a group show here in Los Angeles, called Grammars of Creation, on display at Moskowitz Bayse till March 16th, which I will return to in a second.

White had a great solo show at the same gallery almost exactly a year ago, featuring a series of geological faults modeled in richly veined, colored marble Most also incorporated brass details, acting as so-called “Earth fasteners.”

[Images: From Six Significant Landscapes by Kylie White; photos courtesy Moskowitz Bayse.]

Gallery text explained at the time that White’s works “are at once sculptures, scale models, geologic diagrams, and proposals; each depicts an active fault line, a place of displaced terrain due to tectonic movement.”

The “proposal” in each work, of course, would be the fasteners: metal implants of a sort meant to span the rift of an open fault.

[Image: “Model of Earth Fastener on a Transform Fault; 1”=10” (2017) by Kylie White; note that this piece was not featured in Six Significant Landscapes. Photo courtesy Moskowitz Bayse.]

White’s fasteners seemed to suggest at least two things simultaneously: that perhaps we could fix the Earth’s surface in place, if only we had the means to stop faults from breaking open, but also that human interventions such as these, in otherwise colossal planetary landscapes, would be trivial at best, more sculptural than scientific, just temporary installations not permanent features of a changing continent.

[Image: From Six Significant Landscapes by Kylie White; photo courtesy Moskowitz Bayse.]

As I struggled to explain to my friends, however, while describing White’s work, the visual effect was strangely postmodern, almost tongue-in-cheek, as if her sculptures—all green marble blocks and inlaid brass—could have passed for avant-garde luxury furniture items from the 1980s (and, to be clear, I mean this in a good way: imagine scientific models masquerading as luxury goods).

[Images: Details from Six Significant Landscapes by Kylie White; photos by betway必威 .]

All of which means I sort of laughed when I saw these more recent works that seem to take this postmodern aesthetic to a new height, complete with two fault models mounted atop faux-Greek columns.

[Image: “Model of an Earth Fastener on the Hierapolis Fault (Plutonion)” (2019) by Kylie White; photo courtesy Moskowitz Bayse.]

It’s like plate tectonics meets Learning From Las Vegas, by way of Greek mythology.

Because the columns are also a fitting reference to the pieces’ own subject matter: one, seen at the top of this post, is called “Model of an Earth Fastener on the Delphi Fault (Temple of Apollo)” and the other, immediately above, is “Model of an Earth Fastener on the Hierapolis Fault (Plutonion).” They perhaps suggest an entirely new approach to natural history museum displays—boldly gridded rooms filled with heroic blocks of the Earth’s surface, bathed in neon. Pomotectonics.

In any case, more information about the show is available at Moskowitz Bayse. It closes on March 16th, 2020, although White apparently has another, currently untitled solo show coming up in 2021.

Class Action

[Image: Still from the end of Garbage, Gangsters and Greed.]

I have a long new feature up at The Guardian this weekend that tells the story of an English teacher at Middletown High School, in upstate New York, named Fred Isseks. In the early 1990s, Isseks was given the task of instructing teenage students at the school in how to use a bunch of new video cameras the school had acquired.

To the school’s surprise—and to some administrators’ long-term political frustration—Isseks’s students quickly formed an investigative journalism unit, taking on local politicians and the New York Mafia, and producing a feature-length documentary about the illegal dumping of toxic waste in local landfills.

The resulting film, called Garbage, Gangsters and Greed, made it as far as the Clinton White House, helped turn public opinion against the landfills, leading to their closure, and helped to reinvigorate official New York State hearings, run by Assemblyman Maurice Hinchey, on the subject of organized crime families and the illegal hauling of toxic waste.

The story of the students is pretty incredible—involving death threats, threats of arrest, trespassing onto contaminated land, and more—and I was thrilled to be able to meet or speak with several of them, even to tour the old high school with Fred Isseks in tow. It is not an exaggeration to say that Isseks’s class changed the direction of those students’ lives, as many now work in environmental law or film and television. (One former student, Rachel Raimist, even has a media center named after her at the University of Minnesota.)

The whole thing really pivots on Isseks’s belief that teenagers need to be given projects of true meaning and significance, not simply assigned more tests to take. Indeed, Isseks himself later went on—while still teaching at the high school but after a final cut of the landfill documentary had been completed—to earn a Ph.D. at the European Graduate School, studying under Wolfgang Schirmacher.

His thesis would later be published under the name Media Courage: Impossible Pedagogy in an Artificial Community, and it includes a chapter that, as I describe it in the Guardian piece, advocates for “the philosophical potential of the American high school system. [Isseks’s] belief that teenagers need to be given work with genuine meaning and consequence in the world would shape his entire teaching career and, in the process, change his students’ lives.”

Of course, the rabbit hole of Mob connections to toxic waste in the United States is bottomless, and the true consequences of illegal disposal—particularly, the long-term medical and environmental effects—are yet to be fully accounted for.

I will undoubtedly come back to this topic, but, for now, check out the Guardian piece online (or in this weekend’s print edition), watch the students’ film in its entirety over at YouTube, and click through to Fred Isseks’s blog, where I first read about all of this. His long post putting the landfills into a deeper historical and geological context is superb.

(A brief note from the small-world files: my awareness of Fred Isseks came entirely through a friendly tip from my friend, Ed Keller, who had read an earlier post here on betway必威 called “Terrestrial Warfare, Drowned Lands.” The “Drowned Lands” are not only the area of New York State where Ed Keller lives, but are the same region where the toxic landfills explored by Isseks and his students are all located. I owe a huge thanks to Ed for the heads up!)

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

After the Clouds

[Image: A cloudless day in the Alabama Hills of California; photo by betway必威 ].

The Earth could lose all its clouds according to a feasible runaway greenhouse scenario, modeled by scientists at Caltech.

“Clouds currently cover about two-thirds of the planet at any moment,” Natalie Wolchover writes for Quanta. “But computer simulations of clouds have begun to suggest that as the Earth warms, clouds become scarcer. With fewer white surfaces reflecting sunlight back to space, the Earth gets even warmer, leading to more cloud loss. This feedback loop causes warming to spiral out of control.”

Or, she warns, as if channeling J. G. Ballard’s novel The Drowned World, “think of crocodiles swimming in the Arctic.”

Anticipatory Libraries of Other Worlds

[Image: The mineral library, via ESA].

A team of “European planetary geologists and young scientists” is assembling a mineral library to help future astronauts identify rocks on other worlds. “The goal,” according to the European Space Agency, “is to create a database of all known rocks and minerals on the Moon, Mars and meteorites surfaces for easy identification.”

This collection, assembled in anticipation of discoveries made far from Earth, can then be used as a basis of forensic identification and formal comparison. We will know future worlds through anticipatory fragments we have collected here on Earth.

Although this particular “library” appears to be part of a specific training course, the ESA blog post about it links onward to what I believe is a separate institution, one called—incredibly—the Planetary Terrestrial Analogues Library.

There, the chemical spectra of rocks are analyzed to help understand “the mineralogical and geological evolution of terrestrial planets.” This, again, prepares humans and their robotic intermediaries to encounter landscapes so alien they cannot be understood at first glance, yet similar enough to our home world we can still work out what they’re made of.

International House of Wobbling

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

The Gaithersburg Latitude Observatory was designed in 1899 as part of a ring of similar facilities around the world, all constructed at the same latitude.

[Images: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

Each 必威手机版 was installed at its specific location in order to collaborate in watching a particular star, and—as revealed by any inconsistencies of measurement—to find evidence of the Earth’s “wobble.” This was part of the so-called “International Latitude Service.”

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

The 必威手机版 seen here basically operated like a machine, with a sliding-panel roof controlled by a rope and pulley, and a solid concrete foundation, isolated from the 必威手机版 itself, on which stood a high-power telescope.

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

This pillar gives the 必威手机版 a vaguely gyroscopic feel, or perhaps something more like the spindle of a hard drive: a central axis that grounds the 必威手机版 and allows it to perform its celestial mission.

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

What’s interesting, however, is that this absolutely heroic 必威手机版 program—a structure for measuring heavenly discrepancies and, thus, the wobble of the Earth—is hidden inside such an unremarkable, everyday appearance.

[Image: A photo of the Gaithersburg Latitude Observatory, via NOAA].

It’s a kind of normcore beach hut that wouldn’t be out of place on Cape Cod, with one eye fixed on the stars, a geodetic device revealing our planet’s wobbly imperfections, masquerading as vernacular architecture.

Mars P.D.

[Image: Illustration by Matt Chinworth, via The Atlantic].

Last summer, I got obsessed with the idea of how future crimes will be investigated on Mars. If we accept the premise that humans will one day settle the Red Planet, then, it seems to me, we should be prepared to see the same old vices pop up all over again, from kidnapping and burglary to serial murder, even bank heists.

If there is a mining depot on Mars, in other words, then there will be someone plotting to rob it.

But who will have the jurisdictional power to investigate these crimes? What sorts of forensic tools will offworld police use to analyze Martian crime scenes contaminated by relentless solar exposure, where the planet’s low gravity will make blood spatter differently from stab wounds? Further, if there is a future Martian crime wave, what sort of prison architecture would be appropriate—if any—for detaining perpetrators on another world?

Over the long and often surreal process of researching these sorts of questions, I spoke with legendary sci-fi novelist Kim Stanley Robinson, with Arctic archaeologist Christyann Darwent, with space law expert Elsbeth Magilton, with astrobiologist and political activist Lucianne Walkowicz, with political theorists Charles Cockell and Philip Steinberg, and with UCLA astrophysicist David Paige. All of them, through their own particular fields of expertise, helped chip away at various aspects of the question of what non-terrestrial law enforcement.

Incredibly, I also met a 4th-degree black belt in Aikido named Josh Gold who has been working with a team of advisors to develop a new martial art for space, rethinking the basics of human movement for a world with low—or even, on a space station, no—gravity. How do you pin someone to the ground, for example, when is no ground to pin them on?

In any case, will we need a Mars P.D.? If so, what exactly might a Martian police department look like?

The full feature is now up over at The Atlantic.

Dark Matter Mineralogy and Future Computers of Induced Crystal Flaws

[Image: Mexico’s “Cave of the Crystals,” via Wikipedia].

I guess I’ve got minerals on the brain.

Anyway, there was an amazing story last week suggesting that, deep inside the planet, minerals might exhibit flaws associated with “collisions with dark matter.” In a sense, this would make the entire interior of the earth a de facto dark matter detector—or, according to researchers at the University of Michigan, “minerals such as halite (sodium chloride) and zabuyelite (lithium carbonate), can act as ready-made detectors.”

Proving this hypothesis sounds like the opening scene of a blockbuster science fiction film: “An experiment could extract the minerals—which can be around 500 million years old—from kilometres-deep boreholes that already exist for geological research and oil prospecting. Physicists would need to crack open the extracted minerals and scan the exposed surfaces under an electron or atomic force microscope for the tracks made by recoiling nuclei. They could also use X-ray or ultraviolet 3D scanners to study bigger chunks of minerals faster, but with lower resolution.”

Either way, it’s incredible to imagine that slightly altered mineral structures deep inside the planet might reveal the presence of dark matter washing through the cosmos. After all, the Earth is allegedly “constantly crashing through huge walls of dark matter,” so the idea that some rocks might be glitched and scratched by these impacts isn’t that hard to believe. In fact, this brings to mind another hypothesis, that the GPS satellite network is, in fact, a huge, accidental dark matter detector.

Read more at Nature.

Meanwhile, ScienceDaily reported earlier this month that flaws deliberately introduced into the crystal forms of diamonds could be structured such that they improve those diamonds’ capacity for quantum computation. Apparently, a team at Princeton has designed new kinds of diamonds “that contain defects capable of storing and transmitting quantum information for use in a future ‘quantum internet.’”

There is obviously no connection between these two stories, but that won’t stop me from imagining some vast new quantum computer network, coextensive with the Earth’s interior, performing prime-number calculations along dark matter-induced crystal flaws, crooked mineral veins flashing in the darkness with data, like some buried circuitboard throbbing beneath the continents and seas.

Read more at ScienceDaily.

(Related: Planet Harddrive.)

Secret British Caving Teams and the Mineralogy of Nuclear War

[Image: An otherwise unrelated photo of a cave in China, taken by @PhailMachine, via wallhere].

An interesting story that re-emerged during recent coverage of the Thai cave rescue is that a team of British cavers trapped underground in central Mexico for “more than a week” back in 2004 had been accused of having an ulterior motive.

Of the six men, five were British soldiers, and the crew was rescued not by local emergency crews but by a team flown in from Britain. Nothing about either alleged fact is even remotely suspicious, of course, but, according to local press at the time, “the men had been looking for materials that could be used to make nuclear weapons.”

This was apparently more than just a bar-room rumor: Mexico’s energy minister “waded into the row by saying he would send members of the country’s nuclear research institute into the caves because of rumours the British potholers were looking for uranium deposits.” Things “descended into farce,” according to the Guardian, “amid claims the MoD-sponsored expedition was a secret uranium prospecting exercise and that precise details of the trip were not forwarded to the relevant authorities.”

The conspiracy seems to have begun when someone noticed a particular piece of equipment in a photo of the caving team: “someone spotted radon dosimeters being used. This wasn’t a military training exercise; it was a bunch of guys on holiday, some of whom happened to be in the armed services.”

What the British team would even have done with such materials, if they had found them, including how they would have safely transported uranium out of the underworld in their caving gear—not to mention how they would have exploited this knowledge later, perhaps by developing a vast, illegal, underground mine in the middle of central Mexico?—is difficult to imagine, but, wow, would I like to read that novella.

Six British soldiers descend into the Earth beneath Mexico looking for the infernal materials of war, part of a much larger, secret global mission for subterranean weapons-prospecting, slipping into caves in Central America, the U.S. Southwest, the Namibian desert, and beyond, combining raw international espionage, classified satellite reports, weaponized mineralogy, advanced underground mapping techniques, and every gear-head’s camping equipment fantasy turned up to 11.

The Surface of a Terrestrial Sea

[Image: A sinkhole in Wink, Texas, surrounded by oil extraction and wastewater injection infrastructure].

A story I meant to include in my link round-up yesterday is this news item about a “large swath” of active oil well sites in Texas “heaving and sinking at alarming rates.”

In other words, previously solid ground has been turned into a slow-moving terrestrial sea.

“Radar satellite images show significant movement of the ground across a 4000-square-mile area—in one place as much as 40 inches over the past two-and-a-half years,” Phys.org reports. The land is tidal, surging and rolling with artificially induced deformation.

“This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement,” one of the researchers explains.

[Image: Infrastructure near Wink, Texas].

What’s particularly fascinating about this is why it’s alleged to be happening in the first place: a jumbled, chaotic, quasi-architectural mess of boreholes, abandoned pipework, and other artificial pores has begun churning beneath the surface of things and causing slow-motion land collapse.

For example, “The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.” Or a nearby region “where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.”

This utterly weird, anthropocenic assemblage—or should I say anthroposcenic—has also changed the terrain in other ways. Water leaking into an underground salt formation has “created voids,” for example, which have “caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.” It’s like upward-falling rain.

The site brings to mind the work of Lebbeus Woods: jammed-up subterranean infrastructure, in a sprawling knot of abandoned and semi-functional machinery, causing the solid earth to behave more like the sea.

Read more at Phys.org.